
aFabric: Towards a Holistic View for Managing Hardware
Accelerators in the Cloud

Changhao Wu
Brown University

Providence, RI, the United States

Theophilus A. Benson
Brown University

Providence, RI, the United States

ABSTRACT
As hardware accelerators are widely used in the cloud to reduce re-
sponse time, it is impending to orchestrate and unify heterogeneous
accelerators. In this paper, we describe an operating system para-
digm for heterogeneous accelerators in the cloud and introduce our
sketch design of an operating system, aFabric, using P4 language
as the programming language for offloaded accelerator programs.
Finally, we elaborate on the evaluation plan as the guideline of
concrete design and implementation of aFabric in the future.

CCS CONCEPTS
•Computer systems organization→Real-time operating sys-
tems; • Networks → Cloud computing; Programmable networks.

KEYWORDS
Operating system, Heterogeneous hardware, Cloud accelerators

ACM Reference Format:
Changhao Wu and Theophilus A. Benson. 2020. aFabric: Towards a Holistic
View for Managing Hardware Accelerators in the Cloud. In Student Work-
shop (CoNEXT’20), December 1, 2020, Barcelona, Spain. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3426746.3434057

1 INTRODUCTION AND MOTIVATION
With the end of Moore’s law and the lure of dedicated hardware’s
high performance and energy-efficiency, cloud providers are ex-
ploring a wide range of accelerators, e.g., GPUs, FPGAs, and ASICs.
As they provide attractively significant performance and efficiency
gain, such as throughput improvement, low energy cost, and latency
reduction, providers use them to improve application performance,
increase revenue and overcome CPU performance bottleneck.

However, using accelerators for the applications are pain-staking
and error-prone, since developers have to deal with different archi-
tectures, and hardware have different strict resource constraints,
which are things that programmers pay less attention to during de-
velopment. In addition, modern cloud providers are still providing
individual accelerators as computing instances [1], meaning that
cloud providers leave the hardware management tasks to users, and
users will waste the part of computing power they never use.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’20, December 1, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8183-3/20/12. . . $15.00
https://doi.org/10.1145/3426746.3434057

+ … +

P4Atom

App1 AppN

User

Table
Capacity

Constraints

Register
Capacity

Constraints

Bandwidth
Capacity

Constraints

Data
Dependency
Constraints

User-defined
Op�miza�on

Objec�ve

FabricPlace
MILP solverHeuris�cs

Placement
Decision

Rou�ng
Decision

Generate new P4
program for every device

…

P4 Applica�ons

P4Studio SDNet P4GPU

Table Dependency Externals

Pla�orm # of stage SRAM/stage Reg size

ASIC 10 100k 50k

… … … …

Hardware
Configs aFabric Run�me

Network
Topology

Figure 1: aFabric’s workflow

Therefore, it is desirable for cloud providers to have an operat-
ing system that manages heterogeneous hardware and programs.
First, each heterogeneous target offers a different trade-off in de-
sign space, e.g., ASICs with high throughput but limited memory
size. A global scheduler can make trade-offs and map programs
to the best targets available. It can be even better, if a program
can be automatically broken down into pieces, meaning that the
allocation algorithm has more flexibility planning resource usage;
and programs which exceed the hardware resource constraints are
able to be executed. Second, such an operating system makes the
underlying heterogeneous architectures transparent to program-
mers, since all arduous management tasks, such as data isolation
and device management, are on the operating system. Third, it will
become beneficial to cloud as well, since cloud will understand
users’ intentions, which is an opportunity for an operating system
to achieve global objectives, e.g., minimizing cloud’s energy cost.

To build such a system, we are facing three problems. The fore-
most problem is scheduling different users’ programs upon accel-
erators. Since accelerators are not usually x86 architecture, which
makes the scheduling technique applied onmodern OSs not suitable.
In addition, most accelerators do not have supports for program
co-existing, which makes resource multiplexing difficult to achieve.
Though ViTAL [3] built a system for virtualizing FPGA programs, it
is hard to apply it to heterogeneous hardware. Second, as different
accelerators have different specialties, e.g., GPUs for large memory
capacity but relatively high latency and ASICs for low latency but
limited size of memory capacity, a sophisticated scheduler is re-
quired to allocate different resource for different types of program
demands, while effectively improve the hardware’s utilization rate

https://doi.org/10.1145/3426746.3434057
https://doi.org/10.1145/3426746.3434057

CoNEXT’20, December 1, 2020, Barcelona, Spain Changhao Wu and Theophilus A. Benson

and reduce the hardware cost. Third, a important part in an OS is
memory isolation, which does not has the built-in support from
accelerators; and some applications are executed in a distributed
fashion, this further raises the bar of memory isolation.

We propose aFabric, an OS for heterogeneous accelerators. We
treat accelerator programs as control flow graphs and effectively
decompose them into pieces. Instead of scheduling programs tem-
porally, we schedule all accelerator programs by space. In this way,
scheduling becomes a program placement problem; and aFabric will
properly encode different resource and performance constraints
that aFabric extracts from the program pieces, and receives from
user specific intentions. In addition, aFabric encodes the informa-
tion about the hardware configurations and accelerator topology.
Finally, the placement problem becomes an optimization problem;
and we design heuristics to solve the problem and address the
scheduler’s scalability problem. This optimization process places
program pieces with different demands to appropriate locations to
achieve global optimality. Fine-grained program placement also im-
proves the hardware utilization rate. After the placement decision
has been made, aFabric will generate new programs by merging pro-
gram pieces for every piece of hardware and inject code to ensure
memory isolation.

In this paper, We recognize the benefits and challenges to build
a heterogeneous accelerators OS and present a heterogeneous ac-
celerators OS paradigm receiving programs written in P4 language
as the programming language for accelerators.

2 DESIGN OF AFABRIC
As shown in figure 1, aFabric receive programs defining the over-
loaded computing tasks and dataflow specifications from users and
analyze and decompose P4 programs into P4 tables and schedule
them based on hardware constraints information from the cloud
and global management objectives. As we previously mentioned,
the scheduling program will become a program placement problem.
Since we need a hardware abstraction across heterogeneous hard-
ware to place P4 programs, we choose the PISA architecture [2]
abstraction. Although this abstraction places some strict constraints
of hardware functionality, it is easier to extract the resource con-
straints and suitable for placing P4 programs, which use the lan-
guage that follows the PISA architecture. In addition, to make the
accelerators fabric transparent to users, aFabric allows users pro-
vide configurations describing dataflow between programs; and
aFabric takes the dataflow constraints into consideration during
program placement, ensures data isolation, and maintain correct
data exchange between programs. If programs have to migrate to
different locations due to change of users intentions or satisfac-
tion of the global objective, aFabric will migrate programs’ state
correctly.

P4Atom takes in P4 programs, and analyzes and extracts re-
source requirements and data dependency from the programs. To
preserve the semantic correctness, P4Atom finds the data depen-
dency between tables. Since a P4 program may span over multiple
switches, data dependency across devices should also be preserved.
In addition, a P4 program may contain registers serving as stateful
storage. Therefore, P4Atom will also inspect the P4 program and

find out a possible solution, e.g., piggybacking data or sending extra
packets to update, to maintain the data consistency.

FabricPlace is fed with the P4 tables from P4Atom and hard-
ware information and configurations provided by the cloud, and
generates a model that covers resource constraints and data depen-
dency. This model finally becomes an optimization problem, i.e.,
how to place tables on given hardware resource while preserving
constraints and program correctness, and respecting certain objec-
tives. This optimization can be achieved by using a Mixed-Integer
Linear Programming(MILP) solver. After the decision is made, Fab-
ricPlace generates the P4 programs to be placed on hardware.

aFabric Runtime serves as the operating interface for users.
Since users join, leave, and update programs and configurations all
the time, a runtime broker is needed. aFabric Runtime’s role falls
into 3 parts. 1) Schedules programs. Users submit or revoke their
tasks to aFabric runtime. Then it will invoke FabricPlace to generate
an up-to-date placement decision, which takes resource defragmen-
tation into consideration. 2) State migration. aFabric runtime will
orchestrate the hardware to migrate the stateful information for
one device to another. 3) Ensure data isolation. P4 programs are
accompanied by P4 control plane applications, which are granted
write/read permission to change or read data plane’s tables or reg-
isters. All write/read operations from control plane are submitted
to aFabric Runtime, which will arbitrate whether the operations
are permitted or not and forward the permitted operations to the
correct data plane devices.

3 FUTURE EVALUATION
The evluation of aFabric prototype will be separated into 3 parts.

Correctness: 1) The correctness of programs execution. Al-
though a program may span on multiple device, the functionality
should be equivalent to the original one. 2) The correctness of pri-
vacy maintenance. There should be tests to check if it is possible to
write/read other users data from both data plane and control plane.

Scalability: 1) it is known that MILP is an NP-hard problem, so
as the number of devices increases, a MILP solver will not generate
a placement decision in time. Therefore, heuristics will be deployed.
An experiment should demonstrate how quickly a placement deci-
sion can be made as topology grows. 2) Hardware compilers will
take a significant long time to compile the code. Therefore, even
after the aFabric has made the decision, it will take extra time to
compile. How frequent the programs can be scheduled should be
evaluated to show that it is feasible to host many users’ intentions.

Optimality: 1) We should demonstrate the optimality of our
resource allocation heuristics and how it is better than placing
individual programs on individual devices. 2) We need to prove that
hosting programs on heterogeneous hardware helps cloud providers
satisfy different users’ demand, e.g., high memory demand.
Acknowledgments We thank the anonymous reviewers for their
invaluable feedback. This work was supported in part by NSF grant
CNS-1749785.

REFERENCES
[1] AWS. Amazon ec2 f1 instances. https://tinyurl.com/y6cp3zeq, 2020.
[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,

and M. Horowitz. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. SIGCOMM ’13, page 99–110. ACM, 2013.

[3] Y. Zha and J. Li. Virtualizing fpgas in the cloud. In ASPLOS 2020, pages 845–858.

https://tinyurl.com/y6cp3zeq

	Abstract
	1 Introduction and Motivation
	2 Design of aFabric
	3 Future evaluation
	References

